
www.umbc.edu

CMSC201
 Computer Science I for Majors

Lecture 06 – Decision Structures

Prof. Katherine Gibson

Prof. Jeremy Dixon

Based on concepts from: https://blog.udemy.com/python-if-else/

www.umbc.edu

Last Class We Covered

• Just a bit about main()

• More of Python’s operators

– Comparison operators

– Logical operators

• LOTS of practice using these operators

– Reinforced order of operations

• Boolean variables

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• Understand decision structures

– One-way, two-way, and multi-way

– Using the if, if-else, and
 if-elif-else statements

• Review control structures & conditional operators

• More practice using the Boolean data type

• Learn how to implement algorithms
using decision structures

4

www.umbc.edu

Simple Decisions

• So far, we’ve only seen programs with
sequences of instructions

– This is a fundamental programming concept

– But it’s not enough to solve every problem

• We need to be able to control the flow of
a program to suit particular situations

– What can we use to do that?

 5

www.umbc.edu

Conditional Operators (Review)

6

Python Mathematics Meaning

< < Less than

<= ≤ Less than or equal to

== = Equal to

>= ≥ Greater than or equal to

> > Greater than

!= ≠ Not equal to

www.umbc.edu

Conditional Operators (Review)

7

Python Mathematics Meaning

< < Less than

<= ≤ Less than or equal to

== = Equal to

>= ≥ Greater than or equal to

> > Greater than

!= ≠ Not equal to

www.umbc.edu

Control Structures (Review)

• A program can proceed:

– In sequence

– Selectively (branching): make a choice

–Repetitively (iteratively): looping

–By calling a function

8

focus of
today’s lecture

www.umbc.edu

Control Structures: Flowcharts

9

focus of
today’s lecture

www.umbc.edu

One-Way Selection Structures

www.umbc.edu

One-Way Selection Structures

• Selection statements allow a computer to
make choices

–Based on some condition

11

def main():

 weight = float(input("How many pounds is your suitcase? "))

 if weight > 50:

 print("There is a $25 charge for luggage that heavy.")

 print("Thank you for your business.")

main()

www.umbc.edu

Temperature Example

• Convert from Celsius to Fahrenheit

12

def main():

 celsius = float(input("What is the Celsius temperature? "))

 fahrenheit = 9/5 * celsius + 32

 print("The temperature is", fahrenheit,

 "degrees Fahrenheit.")

main()

www.umbc.edu

Temperature Example - Modified

• Let’s say we want to modify the program to
print a warning when the weather is extreme

• Any temperature that is…

–Over 90 degrees Fahrenheit

• Will cause a hot weather warning

– Lower than 30 degrees Fahrenheit

• Will cause a cold weather warning

13

www.umbc.edu

Temperature Example - Modified

• Input:
– The temperature in degrees Celsius (call it celsius)

• Process:
– Calculate fahrenheit as 9/5 * celsius + 32

• Output:
– Temperature in Fahrenheit

– If fahrenheit > 90

• Display a heat warning

– If fahrenheit < 30

• Display a cold warning

 14

www.umbc.edu

Temperature Example - Modified

• This new algorithm has two decisions at the
end

• The indentation after the “if” is important

• It means that a step should be performed only
if the condition in the previous line is True

15

www.umbc.edu

Temperature Example Flowchart

16

Start

Input: celsius
temperature

fahrenheit =
9/5 * celsius + 32

Print:
fahrenheit

fahrenheit
> 90

TRUE

FALSE

Print a heat
warning

fahrenheit
< 30

TRUE Print a cold
warning

FALSE

End

www.umbc.edu

Temperature Example Code
def main():

 celsius = float(input("What is the Celsius temp? "))

 fahrenheit = 9 / 5 * celsius + 32

 print("The temperature is", fahrenheit,

 "degrees fahrenheit.")

 if fahrenheit > 90:

 print("It's really hot out there, be careful!")

 if fahrenheit < 30:

 print("Brrrrr. Be sure to dress warmly!")

main()

17

www.umbc.edu

Temperature Example Code
def main():

 celsius = float(input("What is the Celsius temp? "))

 fahrenheit = 9 / 5 * celsius + 32

 print("The temperature is", fahrenheit,

 "degrees fahrenheit.")

 if fahrenheit > 90:

 print("It's really hot out there, be careful!")

 if fahrenheit < 30:

 print("Brrrrr. Be sure to dress warmly!")

main()

18

this is the
main level of
our program

this level of the code is
only executed if

fahrenheit > 90

this level of the code is
only executed if

fahrenheit < 30

www.umbc.edu

“if” Statements

www.umbc.edu

“if” Statements

• The Python if statement is used to
implement the decision

• if <condition>:

 <body>

• The body is a sequence of one or more
statements indented under the if heading

20

www.umbc.edu

“if” Semantics

• The semantics of the if should be clear

– First, the condition in the heading is evaluated

– If the condition is True

• The statements in the body are executed

• Control passes to the next statement in the program

– If the condition is False

• The statements in the body are skipped

• Control passes to the next statement in the program

 21

www.umbc.edu

One-Way Decisions

• The body of the if either executes or not
depending on the condition

• Control then passes to the next (non-body)
statement after the if

• This is a one-way or simple decision

22

www.umbc.edu

What is a Condition?

• Conditions

–Can use any comparison (rational) operators

–Can use any logical (Boolean) operators

– Evaluate to True or False

23

www.umbc.edu

Two-Way Selection Structures

www.umbc.edu

Two-Way Decisions

• In Python, a two-way decision can be
implemented by attaching an else
clause onto an if clause

• This is called an if-else statement:

25

if <condition>:

 <statements>

else:

 <statements>

www.umbc.edu

How Python Handles if-else

• When Python sees this structure,
it evaluates the condition

– If the condition is True, the set of
statements under the if are executed

– If the condition is False, the set of
statements under the else are executed

• The code after the if-else is only executed
after one of the sets of statements is executed

26

www.umbc.edu

Two-Way Code Framework

if theCondition == True:

 <code1>

else:

 <code2>

• Only execute code1 if theCondition is True

• If theCondition is not True, run code2

 27

www.umbc.edu

Formatting Selection Structures

• Each if-else statement must close with a colon (:)

• Code in the body (that is executed as part of the
if-else statement) must be indented

– By four spaces

– Hitting the “Tab” key in many editors (including
emacs) will automatically indent it by four spaces

28

www.umbc.edu

Simple Two-Way Example
def main():

 x = 5

 if x > 5:

 print("X is larger than five!")

 else:

 print("X is less than or equal to five!")

main()

29

this is the
main level of
our program

this level of the code is
only executed if
x > 5 is True

this level of the code is
only executed if
x > 5 is False

www.umbc.edu

Simple Two-Way Example #2
def main():

 num = int(input("Enter a number: "))

 if num % 2 == 0:

 print("Your number is even.")

 else:

 print("Your number is odd.")

main()

30

What does
this code do?

It checks whether a
number is even or odd.

www.umbc.edu

Example – Dangerous Dinosaurs

• You have just been flown to an island where
there are a wide variety of dinosaurs

• You are unsure which are dangerous so we
have come up with some rules to figure out
which are dangerous and which are not

31

www.umbc.edu

Time for…

32

www.umbc.edu

Dinosaurs Example

• Sample rules:

– If the dinosaur has sharp teeth, it is dangerous

– If the dinosaur is behind a large wall, it is not
dangerous

– If the dinosaur is walking on two legs, it is
dangerous

– If the dinosaur has sharp claws and a beak, it is
dangerous

33

www.umbc.edu

Dinosaurs Example - Variables

• What are some reasonable variables for this
code?

isSharp for sharp teeth

isWalled for behind large wall

isBiped for walking on two legs

isClawed for sharp claws

isBeaked for has beak

34

www.umbc.edu

Dinosaurs Example - Code
def main():

 print("Welcome to DinoCheck 1.0")

 print("Please answer 'True' or 'False' for each question")

 isSharp = input("Does the dinosaur have sharp teeth? ")

 isWalled = input("Is the dinosaur behind a large wall? ")

 isBiped = input("Is the dinosaur walking on two legs? ")

 isClawed = input("Does the dinosaur have sharp claws? ")

 isBeaked = input("Does the dinosaur have a beak? ")

 if isSharp == "True":

 print("Be careful of a dinosaur with sharp teeth!")

 if isWalled == "True":

 print("You are safe, the dinosaur is behind a big wall!")

 if isBiped == "True":

 print("Be careful of a dinosaur who walks on two legs!")

 if (isClawed == "True") and (isBeaked == "True"):

 print("Be careful of a dinosaur with sharp claws and a beak!")

 print("Good luck!")

main()

35

www.umbc.edu

Dinosaurs Example – Another Way
def main():

 print("Welcome to DinoCheck 1.0")

 print("Please answer '0' (no) or '1' (yes) for each question")

 isSharp = int(input("Does the dinosaur have sharp teeth? "))

 isWalled = int(input("Is the dinosaur behind a large wall? "))

 isBiped = int(input("Is the dinosaur walking on two legs? "))

 isClawed = int(input("Does the dinosaur have sharp claws? "))

 isBeaked = int(input("Does the dinosaur have a beak? "))

 if isSharp:

 print("Be careful of a dinosaur with sharp teeth!")

 if isWalled:

 print("You are safe, the dinosaur is behind a big wall!")

 if isBiped:

 print("Be careful of a dinosaur who walks on two legs!")

 if isClawed and isBeaked:

 print("Be careful of a dinosaur with sharp claws and a beak!")

 print("Good luck!")

main()

36

changes are in blue

www.umbc.edu

Multi-Way Selection Structures

www.umbc.edu

Bigger (and Better) Decision Structures

• One-Way and Two-Way structures are useful

• But what if we have to check multiple
exclusive conditions?

– Exclusive conditions do not overlap with each other

– e.g., value of a playing card, letter grade in a class

• What could we use?

www.umbc.edu

Multi-Way Code Framework
if <condition1>:

 <case1 statements>

elif <condition2>:

 <case2 statements>

elif <condition3>:

 <case3 statements>

more "elif" statements if needed

else:

 <default statements>

39

“else” statement
is optional

www.umbc.edu

Multi-Way Selection Example

• A a computer science professor gives a five-
point quiz at the beginning of every class

• Possible grades are as follows:

5 points: A 3 points: C 1 point: F
4 points: B 2 points: D 0 points: F

• To print out the letter grade based on the raw
points, what would the code need to look like?

 40

www.umbc.edu

Multi-Way Selection Solution
def main():

 score = int(input("Your quiz score out of 5: "))

 if score == 5:

 print("You earned an A")

 elif score == 4:

 print("You earned a B")

 elif score == 3:

 print("You earned a C")

 elif score == 2:

 print("You earned a D")

 else:

 print("You failed the quiz")

main()

41

www.umbc.edu

Multi-Way Selection Solution
def main():

 score = int(input("Your quiz score out of 5: "))

 if score == 5:

 print("You earned an A")

 elif score == 4:

 print("You earned a B")

 elif score == 3:

 print("You earned a C")

 elif score == 2:

 print("You earned a D")

 else:

 print("You failed the quiz")

main()

42

these are five
separate statements

since this is an

if-elif-else

block, only one of the
five statements
will be executed

www.umbc.edu

Nested Selection Structures

www.umbc.edu

Nested Selection Structures

• Up until now, we have only used a
single level of decision making

• What if we want to make decisions
within decisions?

• These are called nested selection structures

–We’ll first cover nested if-else statements

44

www.umbc.edu

Nested Selection Structure Examples

• For example, we may

– Ask the user if they have a pet

– if they have a pet

• Ask the user what type of pet

• if they have a dog, take it for a walk

• elif they have a cat, clean the litter box

• else clean the cage/stable/tank

45

www.umbc.edu

Nested Selection Structures Code

if condition1 == True:

 if condition2 == True:

 execute codeA

 elif condition3 == True:

 execute codeB

 else:

 execute codeC

else:

 execute codeD

46

www.umbc.edu

Nested Selection Structures Code

if condition1 == True:

 if condition2 == True:

 execute codeA

 elif condition3 == True:

 execute codeB

 else:

 execute codeC

else:

 execute codeD

47

this is the main level
of our program:

an if-else block

this is the next level,
inside the first
if statement

codeA, codeB, and codeC
are separate statements

since this is an

if-elif-else

block, only one of them
will be executed

if our first if
statement was
false, we would

skip here and
execute codeD

www.umbc.edu

Nested Selection Structure Example

• You recently took a part-time job to help pay for
your student loans at a local cell phone store

• If you sell at least $1000 worth of phones in a
pay period, you get a bonus

– Your bonus is 3% if you sold at least 3
iPhones, otherwise your bonus is only 2%

48

www.umbc.edu

Nested Selection Solution
def main():

 totalSales = float(input("Please enter your total sales:"))

 if totalSales >= 1000.00:

 iPhonesSold = int(input("Enter the number of iPhones sold:"))

 if iPhonesSold >= 3:

 bonus = totalSales * 0.03

 else:

 bonus = totalSales * 0.02

 print("Your bonus is $", bonus)

 else:

 print("Sorry, you do not get a bonus this pay period.")

main()

49

www.umbc.edu

Design Example: Max of Three

www.umbc.edu

Study in Design: Max of Three

• With decision structures, we can solve more
complicated programming problems

• However, designing and coding these
programs becomes more complicated too!

• Let’s create an algorithm to find
the largest of three numbers

51

www.umbc.edu

Max of Three: Code Framework

• Here’s the “easy” part of our code completed:

def main():

 x1, x2, x3 = int(input("Please enter three values: "))

 # we need to write the missing code that sets

 # "maximum" to the value of the largest number

 print("The largest value is ", maximum)

main()

52

www.umbc.edu

Strategy 1: Compare Each to All

• This looks like a three-way decision, where we
need to execute one of the following:

maximum = x1

maximum = x2

maximum = x3

• What we need to do now is preface each
one of these with the right condition

 53

www.umbc.edu

Strategy 1: Sample Code

• Let’s look at the case where x1 is the largest

if x1 >= x2 >= x3:

 maximum = x1

• Is this syntactically correct?

– Yes, Python allows this

– It’s equivalent to x1 ≥ x2 ≥ x3

 54

www.umbc.edu

Aside: Writing Decisions

• When writing a decision, there are two critical questions:

1. Does the condition accurately and correctly
test what we want it to test?

– Are we certain the condition is true
in all cases where x1 is the max?

2. When the condition is true, does the body of the
decision perform the correct action?

– In our example, if x1 is at least as large
as x2 and x3, then the maximum should be x1

55

www.umbc.edu

Writing Decisions: Conditions

• Is the condition doing what we want it to?

if x1 >= x2 >= x3:

• What is this actually testing?

– What happens if x3 is bigger than x2?

– It returns False! But x2 vs x3 doesn’t matter

– Split it into two separate tests:

 if x1 >= x2 and x2 >= x3:

56

www.umbc.edu

Writing Decisions: Body Statements

• Is the body statement doing what is
appropriate when the conditional is True?

if x1 >= x2 and x1 >= x3:

 maximum = x1

• Yes! If x1 is at least as large as both x2 and
x3, we can set its value to be the maximum

57

www.umbc.edu

Strategy 1: Solution

• Here’s our completed code:
def main():

 x1, x2, x3 = int(input("Please enter three values: "))

 if x1 >= x2 and x1 >= x3:

 maximum = x1

 elif x2 >= x1 and x2 >= x3:

 maximum = x2

 else:

 maximum = x3

 print("The largest value is ", maximum)

main()

58

www.umbc.edu

Strategy 1: Downsides

• What would happen if we were trying to find
the max of five values?

– We would need four Boolean expressions, each
consisting of four conditions and’ed together

• What about twenty values?

– We would need nineteen Boolean expressions,
with nineteen conditions each

• There has to be a better way!

59

www.umbc.edu

Strategy 2: Decision Tree

• We can avoid the redundant tests of the
previous algorithm using a decision tree instead

• Suppose we start with x1 >= x2

– This knocks either x1 or x2 out of the
running to be the maximum value

– If the condition is True, then we need to
check whether x1 or x3 is larger

60

www.umbc.edu

FALSE TRUE TRUE

FALSE TRUE

Strategy 2: Decision Tree Flowchart

61

Start

x1 >= x2

FALSE
x1 >= x3 x2 >= x3

maximum = x3 maximum = x1 maximum = x3 maximum = x2

End

www.umbc.edu

Strategy 2: Decision Tree Code

• Here’s the code for the previous flowchart
if x1 >= x2:

 if x1 >= x3:

 maximum = x1

 else:

 maximum = x3

else:

 if x2 >= x3:

 maximum = x2

 else:

 maximum = x3

 62

www.umbc.edu

Strategy 2: (Dis)advantages

• This approach makes exactly two
comparisons between the three variables

• However, this approach is more complicated
than the first

– To find the max of four values you’d need
if-elses nested three levels deep with
eight assignment statements

– This isn’t much better than the last method!

 63

www.umbc.edu

Strategy 3: Sequential Processing

• How would you solve the problem?

• Since you’re not a computer, you could look at
three numbers and know which is the largest
– But what if there were one hundred numbers?

• One strategy is to scan the list for a big number
– When one is found, mark it, and continue looking
– If you find a larger value, mark it, erase the

previous mark, and continue looking

 64

www.umbc.edu

Strategy 3: Sequential Processing

65

Start maximum = x1

x2 > maximum

FALSE

TRUE

maximum = x2

x3 > maximum

FALSE

TRUE

maximum = x3

End

www.umbc.edu

Strategy 3: Sequential Processing Code

• This idea can be easily done in Python code

maximum = x1

if x2 >= maximum:

 maximum = x2

if x3 >= maximum:

 maximum = x3

66

Why do we use two
if statements?

What would happen if we used
an if-elif statement?

www.umbc.edu

Strategy 3: Sequential Processing

• This process is pretty repetitive

–Which means we could use a loop!

• We would repeat the following steps:
1. Prompt the user for a number
2. Compare it to the current maximum
3. If it is larger, update the max value

– Repeat until the user is done entering numbers

• We’ll talk about this more when we cover loops

67

www.umbc.edu

Strategy 4: Take Advantage of Python

68

• Python has a built-in function called max

– It takes in numbers and returns the max value

def main():

 x1, x2, x3 = int(input("Please enter three values: "))

 maximum = max(x1, x2, x3)

 print("The largest value is ", maximum)

main()

– This is why we called our variable “maximum”
instead of max – because max is already defined!

www.umbc.edu

Lessons Learned

www.umbc.edu

Avoid “Cowboy Coding”

• There is usually more than one way to solve a
problem

– So don’t rush to code the first idea that pops into
your head

– Think about the design and ask if there’s a better
way to approach the problem

– Your first task is to find a correct algorithm

– After that, strive for clarity, simplicity, efficiency,
scalability, and elegance

www.umbc.edu

Think Like a Computer

• Try to “BE” the computer

– One of the best ways to design an
algorithm is to ask yourself how
you would solve the problem

• (Try to keep in mind the restrictions a
computer has when you’re doing this)

– This straightforward approach often makes
for simple, clear, and efficient code

 71

www.umbc.edu

Design for the Future

• Generality is good!

– Considering a more general problem can
lead to a better solution for a special case

– If a “max of N numbers” program is just as
easy to write as the max of three, write the
more general program

• It’s more likely to be useful in other situations

72

www.umbc.edu

Don’t Duplicate Effort

• Don’t reinvent the wheel

– If the problem you’re trying to solve is one
that lots of other people have encountered,
find out if there’s already a solution for it

• As you are learning to program, designing
programs from scratch is a great experience!

– Truly expert programmers know when to borrow

73

But, as beginning programmers, you are not allowed to use built-in
functions to solve assignments -- we need to see your understanding!

www.umbc.edu

Announcements

• Your Lab 2 is meeting normally this week!

– If you had Lab on Monday, see BB for instructions

• Homework 3 is out

– Due by Monday (Feb 22nd) at 8:59:59 PM

– Homework 2 due date extended to Feb 16

• Homeworks and Pre-Labs are on Blackboard

74

www.umbc.edu

Practice Problem

• Create a choose-your-own-adventure program
using if-else-elif statements

• For example:
print("You enter a dark room with two doors.")

print("Do you go through door #1 or door #2?")

door = int(input("Choose a door: "))

if door == 1:

 print("There's a bear eating a cheese cake.")

 print("You can run, hide, or talk to it.")

 # and so on...

75

www.umbc.edu

Practice Problems

• From the Zelle textbook:

– Chapter 7, Programming Exercises

• #1 (overtime)

• #6 (speeding tickets)

• #8 (political eligibility)

• #11 (leap years)

• Be creative: come up with a problem and solve it
in Python code. Trade problems with a friend!

 76

